
RSNN: Recurrent Siamese Neural Network based Target Tracking

Akshay Sharma*1, Mandeep Singh*1, Praful Kumar*2, and Mangal Kothari2

Abstract— This paper presents the challenges faced by the
current state-of-the-art single object trackers in the challenging
visual datasets which includes occlusions and similar objects in
the frame. We also describe the proposed Recurrent Siamese
Neural Network (RSNN) which is more robust in visually
challenging scenario and is potentially better solution for active
target tracking.

I. INTRODUCTION

Object detection and tracking is an important aspect of
modern robotics, which nowadays are required to perform
complex actions, ranging from an interactive humanoid
robot to self-driving cars. With an ever-increasing extend of
robotics into human life, from a fully-autonomous delivery
drone to an robotic security bot, the need for robots that can
see like we do. Dynamic Object tracking using autonomous
agents is a very active and important field of research as
it has wide ranging applications especially in the field of
urban surveillance. The challenge is to develop a tracker
that is not only accurate but also capable of yielding real
time results. Deep Neural Networks, especially CNNs with
the capability of extracting rich features have been proven
extremely capable at image classification, greatly improving
the tracking performances. This project aims to address the
challenge of tracking a dynamic object moving randomly in
a known environment using autonomous agents taking the
help of vision based inputs.

II. RELATED WORK

There are a lot of research work related to the object
detection and tracking over the last few decades. Object
tracking is the task to estimate the location and motion of
the target objects using camera feeds. Various techniques
are in the literature to solve the problem of object track-
ing (classified into single object tracking and multi object
tracking). Early successful works which are the most popular
trackers (optical flow) directly work on estimating the flow
vector of the dense image pixels (Dense Optical Flow) or the
features detected from the images (Sparse Optical Flow like
Kanade Lucas Tomasi feature-tracker). Many have explored
the idea of Kalman Filtering using some motion model and
clustering algorithms like Meanshift, Camshift to predict the
location of the moving object in the image which to the

*This work was done in the partial fulfillment of AE640A: Autonomous
Navigation course

1Akshay Sharma, Mandeep Singh is with the Department of Mechan-
ical Engineering, Indian Institute of Technology (IIT) Kanpur, INDIA
{akshay, mandeeps}@iitk.ac.in

2Praful Kumar, Dr. Mangal Kothari is with the Department of
Aerospace Engineering, Indian Institute of Technology (IIT) Kanpur, INDIA
{praful, mangal}@iitk.ac.in

extend have shown great results for single object tracking.
Recently, many single object trackers have become popular
to run in real time and good tracking and failures and is
included in the OpenCV library. These include BOOSTING
(based on AdaBoost) which categories the image patches into
positive and negative instances; Multiple Instance Learning
(MIL) which is similar to the concept of Boosting with the
addition of using bag of positive instances so that it would
contain one instance whose centroid matches with that of
the object; KCF (Kernelised Correlation Filter) built over
the idea of MIL, TLD (Tracking, Learning and Detection)
which includes first tracking the object frame to frame and
then detector corrects its location and the detectors error
is learned. Recently, after the success of Neural Networks
(NN) soon after the ImageNet Challenge in major computer
vision tasks, it has become a notion to test NN in all types
of vision tasks. Many have implemented the idea of using
convolutional neural network for the visual tracking problem.
Among them is the fully connected Siamese Neural Network
which has proven to perform best for the face recognition
related tasks and raise interest in the tracking community for
their simplicity and competitive performance. Also, recently
Siamese network is implemented to perform single object
tracking (SiamFC: Siamese Fully Conv-net) and its improved
version CFNet which is the winner of VOT-2017 Challenge.

III. EXISTING TRACKER ANALYSIS

We have tested various trackers in the OpenCV library:
Boosting, KCF, MIL, TLD, along with the SiamFC, winner
of VOT-2017 Challenge over different hard datasets which
includes full occlusion, drastic change of instances. Some
of the instances where all the popular object tracker failed
is showcased in the following figures. BOOSTING, KCF
and MIL tracker does not adapt the variation in the size of
the object being tracked while TLD can adapt by changing
the size of the bounding box (fig. 1). It is also found
that BOOSTING and MIL track false objects during full
occlusion and BOOSTING recovers after full occlusion but
MIL fails to do so (fig. 2).

Fig. 1: BOOSTING fails to
adapt bounding box size

Fig. 2: MIL fails after full
occlusion

Fig. 3: KCF fails to adapt in
changing viewpoint

Fig. 4: TLD not robust in
scale change

Also, KCF gives tracking failure in cases of change in
the viewpoint of the camera in addition to the full occlusion
(fig. 3. However, TLD is shown to perform much better in all
the above mentioned cases. The object is still tracked even
if the viewpoint is changed. Also, it shows correct tracking
failure under full occlusion and it does recover after full
occlusion. It also reports failure when object is not in the
frame but in not robust in the scale change of the bounding
box (fig. 4).

After the analysis of SiamFC, it is found that the per-
formance of SiamFC is not robust in cases when the target
object is in the environment with similar looking objects.
It usually switches to the similar looking object leaving
the target (fig 5). As it does not keep the past instances
in memory it started tracking the new object as the actual
target is occluded for some time (fig 6). So, saving different
instances for future comparisons can potentially improve the
performance.

Fig. 5: SiamFC switch to similar looking person in BMX4
dataset

Fig. 6: SiamFC failed to track toyplane after occlusion

IV. SYSTEM OVERVIEW

We will use the SiamFC tracker as our base, which uses
a fully convolutional siamese neural network, and propose
possible improvements in the same. This tracker was the
winner of VOT-2017 Real-time Visual Tracking challenge,
supporting frame rates up to 80 hz on a desktop and accuracy
comparable to that of the state-of-art trackers. In this tracking

approach a deep convolutional network is pre trained for
a similarity learning problem and then is used to perform
object tracking using the learned similarity functions on an
exemplar image and the next frame. The basic working of the
tracker involves the use of a learned similarity function f(z,x)
which compares a candidate image x, with the target image
z. Based on the score returned by this similarity function
a prediction is made, such that a high score indicates more
similarity between x and z. The candidate image x is taken
from all possible locations in the new frame and the one with
the highest score indicates the location of the target in the
new frame.

Fig. 7: Reference SiamFC model

The above figure. 7 represents the basic framework of the
tracker. The target image z and the candidate image x are
both passed through identical transformations Y and then
those transformed images are passed through the similarity
function g, such that f (z,x) = g(ϕ(z),ϕ(x)). The transfor-
mation ϕ represents the embedding of the images. The
function g(ϕ(z),ϕ(x)) actually produces a convolution of the
embeddings of z and x for all possible x in the new frame.

g(ϕ(z),ϕ(x)) = ϕ(z)∗ϕ(x)+b1

, where b1 denotes a signal which takes value bεR in every
location. This produces a score map on the whole frame
indicating the similarity values for each candidate image.
Then using the target image and the image with the max.
Similarity score we can further measure the translation of the
target object. To obtain good frame rates while tracking the
tracker has been kept simple in the sense that it does not keep
a memory of the past appearances and also avoids the use
of techniques like optical flow or colour histograms. Below
is an explanation of each component of the basic framework

A. Fully-convolutional Siamese network

A fully convolutional Siamese network takes two input
images z‘ and x‘, which are basically the training image and
the test image respectively. The image z‘ defines the target
object that is to be tracked and the image x‘ represents the
next video frame and can be treated as a large search area in
which we have to pick out patches that match the target
object represented by the image z‘. Both the imaged are
passed through a pre-trained CNN to generate feature maps.

These maps are used to generate a cross co-relation map by
the following formula:

gp(z‘,x‘) = f (z‘)∗ f (x‘)

. This cross co-relation actually equates the exhaustive
searching for a patch in x‘ which matches the target image
z‘.

B. Training with large search images

The siamese network operates on an exemplar image and
a large search image and generate s a score map. This score
map is used to calculate losses corresponding to each target
and exemplar image pair. For training the following loss
function has been used,

l(y,v) = log(1+ exp(−yv))

where v is the score of a exemplar-candidate pair and
yε+1,−1 is the ground truth label. This ground truth label
descries whether a match was found for the exemplar image
in the candidate image or not. As we pass a large search
area along with the exemplar image we get a score value
for all the pairs of the exemplar image and the candidates
that are formed from the large search image. This gives us
a loss value for all those pairs which are then used to find
the mean loss for the pair of exemplar image and the large
search image. The mean loss is defined as,

L(y,v) =
1
D ∑

uεD
l(y[u],v[u])

. Now to obtain the parameters (θ) of the convolutional
network we apply Stochastic Gradient Descent (SGD) to
minimize the loss function,

argminθ Ez,x,yL(y, f (z,x, ;θ))

The search area is taken from the center of the previous esti-
mated location of the object in the image. The classification
of an example as positive is made if the elements of the
score map are within radius R of the center. y[u] = +1, if
k||u− c||<= R, otherwise y[u] =−1

C. Tracking

To accomplish the tracking task the feature representations
of both the target image and the search image are both passed
through the Siamese network. For every new image frame a
search area equal to four times the size of the target object is
taken. This search area is centered at the estimated position
of the object in the previous image frame. This search area
forms the search image x‘. Now the position with the highest
score value from the cross co-relation function gives us the
position of the target object in the current image frame. The
target image z‘ is also not static but is a weighted average
of all the previous instances of the target object. When the
object moves its appearance changes as its relative position
with respect to the camera changes along with the viewing
angles. The moving average part of the tracker takes this into
account by updating the target image with a weighted new
instance of the target object.

V. OUR APPROACH

While checking out the existing iteration of the tracker
we noticed that at some places the tracker started following
wrong but similar looking objects and also was not able to
properly detect partial or full occlusion. On going in depth
into the working of the tracker we came up with some
possible additions in the tracker that can possible improve
the overall functioning of the tracker. The existing tracker
was taking a moving average of all the instances of the
target object without considering whether the detected object
was correct or not. This problem of not checking whether
the detected object is correct or not create issues whenever
the target gets partially or fully occluded. In these cases the
tracker updates the exemplar image of the target with false
objects which leads to it failing in some cases later on even
when the object comes out of occlusion.

Fig. 8: RSNN model

A. Score Thresholding
To account for the above problem we started storing the

previous instances of the object. The criteria of storing the
instances will be discussed below. Now we used the score
map to generate a new score called max score. The score map
earlier was being used to generate the location of the center
of the new bounding box for the object. But now we used
this location to calculate an average score within a window
of one-tenth of the size of the bounding box. This score
was generated for each stored instance and then these scores
were normalized and were used as weights for generating a
weighted mean representation of the target instances based
on the stored instances. For every stored instance, the value
of max score was calculated as:

maxscorek =
∑

x+ w
10

x− w
10

∑
y+ h

10
y− h

10

(
score[i][j]

)
2(x+ y)

, here k = kth instance
x,y = represent the center of the predicted bounding box w,h
= width and height of the bounding box

This max score for corresponding to every instance was
saved in a array corresponding to every k. The array can be
represented as W , such that

W [k] = maxscore[k]

This array was then normalized before calculating the mean
template,

W =
W
||W ||

The mean template was then calculated using these weights
and the stored instances,

templatemean =
n

∑
k
(W [k]∗ templatek)

,where n = Total no. of templates stored so far
templatemean = mean template
templatek = kth template

Now using the maximum of the max scores a new template
was generated from the current image frame. This template
was used to calculate cosine similarity with the mean tem-
plate. This value was then used to decide whether to add
this new template to the list of stored templates or not.
The usefulness of these separately stored instances shows
up when we detect the scores going to low values meaning
there is an ambiguity amongst multiple objects. At this point
instead of just checking with the earlier exemplar image we
generate scores for all pairs of exemplar templates saved and
the search area and the maximum of the maximum score
generated is used to update the target location.

B. Occlusion/Similarity Detection

In order to implement changes in model functioning in
case of occlusion or subject change, it becomes nescessary
to identify the situation. We plotted the heat maps of max
score matrices generated by Score thresholding and it was
observed that the model shows high probability of losing
target when it’s score matrix shows a diversion from single,
dominant maxima to multiple local maximas. The absolute
maximum score value in this case drops as the scores are
redistributed.
Running the model on different sets, we identified a threshold
value for absolute maximum score below which the score
map begins to disassociate, signifying a case of occlusion or
subject change (Fig.10 vs Fig. 11)

C. LSTM

We decided to train a neural network on the given ground
truth bounding boxes of the train dataset to extract a kind
of motion model. To train this model we used LSTMs as
they are used to learn data which is sequential in nature.
The bounding box data that we have has a sequence in it
as in a way this data stores the motion model of the target
object.

LSTM takes a sequential input and predicts the next state
after each input and passes the output to the next time step
along with the next input to allow the sequential information
to get incorporated. Here a series of bounding boxes is
given as the sequential input through the LSTM model. The
bounding box data is taken from the groundtruth values of
the training data and is passed as a set of 5 timesteps and
is ran for 30 epochs. The trained model is used along with

Fig. 9: Folded LSTM Cell

Fig. 10: Unfolded LSTM Cell

the above previous model. Whenever we detect partial or
full occlusion the framework switches to the LSTM model
and starts passing a series of previously estimated values of
bounding boxes through the learned model. This model then
predicts a new bounding box from the given input data and
then this bounding box is used to track the object. This keeps
happening until the maximum score values of the score map
again gets within a given threshold indicating that the object
has come into view once again.

D. LSTM Motion Model Architecture
The LSTM system architecture used for predicting the

motion of the target object is:

Layer 1: LSTM layer with 32 hidden units

Layer 2: 0.5 Dropout layer

Layer 3: Dense layer with 16 neurons

Layer 4: Activation layer with softmax as activation function

Layer 5: Dense layer with 4 neurons

VI. RESULTS

Fig. 11: SiamFC failed to track toyplane after occlusion

Fig. 12: SiamFC failed to track toyplane after occlusion

Fig. 13: SiamFC failed to track toyplane after occlusion

Fig. 14: SiamFC failed to track toyplane after occlusion

The above figures show the results of running our frame-
work on the BMX4 dataset. The heat maps correspond to the
score maps generated on passing the exemplar image and
the candidate search area through the siamese network. In
this particular dataset the original tracker started tracking the
person standing by the wall when the cyclist passes closed
to it and did not recover after that. Our framework tries to
correct that wrong detection. In the first pair of heat map
and image it can be seen that the correct object (cyclist)
is being tracked and the corresponding heat map shows the
score maxima to be on the cyclists which can be seen as
the green dots. Now in the next figure 12 as the target
approaches the person by the wall we see a spread in the heat
map. The local maximas which are represented by the green
dots spread in a larger area indicating multiple objects being
closely matched with the exemplar image. This can be seen in
the form of the bounding box being shifted to the person by
the wall. Now unlike the original framework our model tries

to correct this mistake. In the next figure 13 the tracker shifts
back to the actual target. This happens because when the
tracker detects the local maximas to be distributed it switches
to the trained LSTM model which based on the previous
positions of the bounding box, predicts the correct location
of the target. Although the LSTM framework is working to
an extent but we see that the tracker starts tracking the wrong
object once again. The main reason behind this is that our
LSTM model is not trained on enough amount of data due
to lack of computing resources. Due to minimal computing
power we were not able to train the model properly.

Fig. 15: Average Precision comparison

Fig. 16: Average Precision AUC comparison

The proposed RSNN (named as siamlstm) in the results is
run on the small HKUST object tracking dataset. Also, the
baseline SiamFC is used for comparison of the average preci-
sion (fig. 15), average precision AUC (fig. 16), and average
IOU (fig. 17). The comparison is based on three different
number of iterations. We found that the average precision
is slightly less than the baseline SiamFC as the amount
of video dataset used for comparison is a subset of the
total dataset. Also, due to the less computational resources
available to experimentally verify the proposed model, the

Fig. 17: Average IOU comparison

model is not well tuned. The computational speed of the
system is by far 60 times less than the authors’ hardware
capabilities of SiamFC baseline which leads to slightly lower
precision. Hence, RSNN can potentially outperform the
baseline SiamFC with the adequate computational resources
(with Nvidia GPUs) to train the model better.

VII. CONCLUSIONS

The Siamese Neural Net is a state-of-the-art tracking
framework but it has some flaws. We were able to come
up with possible solutions after careful evaluation of the
framework, and were able to implement those solutions in
the existing framework to a certain extent. We were limited
by the limited computing resources we had at our disposal.
Even with the limited resources we were able to see some
improvements that have been explained in the report, and
we assume that if we are able to train our model on a
larger dataset using better computing resources our model
can perform significantly better than its current state.

REFERENCES

[1] S. Salti, A. Cavallaro and L. Di Stefano, ”Adaptive Appearance
Modeling for Video Tracking: Survey and Evaluation,” in IEEE
Transactions on Image Processing, vol. 21, no. 10, pp. 4334-4348,
Oct. 2012. doi: 10.1109/TIP.2012.2206035

[2] X. Li, W. Hu, C. Shen, Z. Zhang, A. Dick, A. van den Hengel,
”A Survey of Appearance Models in Visual Object Tracking,” in
ACM Transactions on Intelligent Systems and Technology (TIST),
Sep. 2013.

[3] Bertinetto, Luca, et al. ”Fully-convolutional siamese networks for
object tracking.” European conference on computer vision. Springer,
Cham, 2016.

[4] Z. Kalal, K. Mikolajczyk and J. Matas, ”Tracking-Learning-
Detection,” in IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 34, no. 7, pp. 1409-1422, July 2012.

[5] Li, Siyi and Yeung, Dit-Yan Visual Object Tracking for Unmanned
Aerial Vehicles: A Benchmark and New Motion Models. AAAI,
pages(4140-4146), 2017

[6] Fu, Changhong and Carrio, Adrian and Olivares-Mendez, Miguel A
and Suarez-Fernandez, Ramon and Campoy, Pascual Robust real-time
vision-based aircraft tracking from unmanned aerial vehicles Robotics
and Automation (ICRA), 2014 IEEE International Conference on
pages (5441-5446), 2014

	INTRODUCTION
	RELATED WORK
	EXISTING TRACKER ANALYSIS
	SYSTEM OVERVIEW
	Fully-convolutional Siamese network
	Training with large search images
	Tracking

	Our Approach
	Score Thresholding
	Occlusion/Similarity Detection
	LSTM
	LSTM Motion Model Architecture

	RESULTS
	CONCLUSIONS
	References

