
VISUAL QUESTION ANSWERING

Akshay Sharma(14062), Bhawesh Kumar(14181), Mandeep Singh(14363), Mayank Garg (14375),
Nikhil Baranwal (14425)

CS671A: Introduction to Natural Language Processing
Indian Institute of Technology Kanpur

Abstract - The focus of our project is Visual Question
Answering (VQA). In particular, we focus on questions with
open ended answers. We use a Multi-Layer Perceptron (MLP)
model with softmax classifier on the dictionary words for
generating answers. We try various word embedding
techniques (BoW, GLoVe, word2vec) for representing text
questions and pre-trained CNN (VGG16) for representing
Images. We then implement the LSTM architecture for text
questions with GLoVe embedding for words. We also
implement a unique multi-model approach in which we
distribute questions in 3 different classes depending on the type
of answer expected. Different neural-architectures are used for
different classes of questions. Finally, we briefly review the
emerging technique of image-question co-attention for VQA.
We conclude with a brief discussion of our results and future
works. MS COCO dataset is used in all models.
Index Terms— CNN, word2vec, GloVe, LSTM, MLP

1. INTRODUCTION

Visual Question Answering deals with answering text based
questions about a given image. The question can be open
ended type, yes/no type, MCQ type or numerical answer
type. The VQA task requires concepts and techniques from
Computer Vision and Natural Language Processing. Image
features are extracted using Computer Vision techniques,
while text features from questions and answers are extracted
using Natural Language Processing techniques. A VQA task
is challenging for a computer because any algorithm hoping
to perform such a task must meaningfully combine the text
and image features which comes from very distinct feature
spaces[1][6].

1.1 Motivation

Computers are now easily able to do tasks like object
recognition, scene classification quite well. However, the
ability of the computer to extract deeper semantic meaning
from the questions remains lacking. VQA provides a real
test for such understanding. Besides, VQA also has some
important real world applications. Imagine a visually
impaired person who could just click an image from his

phone and he would be informed about his surroundings.
VQA can also be used to perform Visual Turing Task..

1.2 Overview

In the project, we implement a trained model for VQA. We
use MS COCO (2014) dataset for training and testing[2. The
MS COCO dataset has 82,783 images and 248,349
questions for training and 40,504 images and 121,512
questions for testing.
In Section 2, we describe the basic pipeline of VQA. In
section 3, we try a new approach involving classification of
questions based on the type of answer expected. Section 4
describes the experimental setup of the methods mentioned
for this project. In section 5, we discuss our results. In the
final section, we briefly describe scopes of improvement in
the VQA task and future works.

2. BASIC PIPELINE

The basic pipeline to solve this problem is to get features
from images and questions and then combine them and use
them to predict the answer using a classifier (MLP). The top
most answers from training dataset is used as different
classes in which our answer is predicted.[5][6]

2.1 Image features

Mainly the image features are extracted through
Convolutional Neural Network (CNN). CNN is used to
extract features from the images because it takes care of the
structures and locality in the image. A CNN consists of a
number of convolutional and subsampling layers optionally
followed by fully connected layers. Many pretrained models
are available for CNN: ResNet, AlexNet, VGGNet,
GoogleNet etc [7][8]

2.2 Text features

We have used four different word embeddings namely
word2vec[11], GloVe[12], BoW and LSTM[9] (using

GloVe). In the first three embeddings, for every question we
take the average of its word embeddings and use the
resulting vector as the question vector. Although this
approach seems reasonable, this leads to loss of information
related to the relative position of the words of the sentence,
i.e. a question with all constituent words jumbled up will
produce the same question vector.
To address this issue LSTM based GloVe embeddings was
used. As LSTM preserves the sequential information it gives
a much better representation for the question vector.

2.2.1 LSTM

LSTM (Long Short Term Memory) units are used in RNN
layers to model sequential information[9]. A basic LSTM
unit works by using a feedback loop in which the output of
one time step is used as an input for the next.

Image source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Apart from using the sequential information directly LSTM
cells also have three types of gates namely (forget, input,
output). Using the forget gate the network can learn whether
to forget the past information or update it. This ensures that
if needed the network can remember information in long
sequences like the questions that are used in visual question
answering. This system ensures that the information
regarding the relative position of words in the question is
taken into account when the final question vector is
generated.

2.3 MLP

MLP (Multilayer Perceptron) is a type of vanilla feed
forward neural network as they usually consist of only one
hidden layer [4]. MLP consists of more than one perceptron
and consists of input layer and output layer along with
multiple hidden layers in between (as shown is the
following image). Generally, MLP consists of a single
hidden layer which is ideal for approximating any

continuous function. MLP are extremely helpful in the
classification problem

Image source: https://medium.com/@ksusorokina/image-classification
-with-convo lutional-neural-networks-496815db12a8

The features extracted from 2.1 and 2.2 are concatenated
and sent to MLP described in 2.3 to predict the correct
answer.

2.5 IMAGE QUESTION CO-ATTENTION [3]

The idea is to emphasise more on certain important words in
the question and get their relationships in the image so as to
get the desired context in the question as well as in the
image.
Two co-attention strategies have been proposed by Lu et al.
Parallel Co-attention (attends to image and question
simultaneously)
Alternating Co-attention (sequentially alternates between
generated image and question attention maps)
Following is the approach used which is based on
alternating co-attention:

Given an image feature map V ∈ , and the question𝑅𝑑𝑥𝑁

representation Q ∈ . Initially, the similarity (the𝑅𝑑𝑥𝑇

affinity matrix C ∈) between each word vector, qi in𝑅𝑇𝑥𝑁

the sentence with the image feature map locations, vj is
calculated by using the following formula, as defined by Lu
et al.

,where ∈ contains the𝐶 = 𝑡𝑎𝑛ℎ(𝑄𝑇𝑊
𝑏
𝑉) 𝑊

𝑏
𝑅𝑑𝑥𝑑

weights.
After that, the image feature vectors and question vectors

are attended by using an attention operation 𝑥 = 𝐴(𝑋, 𝑔)
defined by Lu et al. along with the guidance vector, g. (Here
weights used for question and image feature vectors are

shared in different layers). First, the intermediate attended

question feature is generated by passing Q, question𝑠
feature with no attention guidance, i.e. g=0 to the attention

operator, A. Then, is passed as an attention guidance𝑠
vector along with the image feature map, V as input to

generate the attended image feature, which is only the𝑣
weighted feature map without addition as mentioned in the

paper. Finally, attended question feature vector, without the𝑞
addition of weighted word vectors is generated by passing
the question feature, Q along with the guidance of attended

image feature . This process can possibly be reiterated by𝑣
first passing image feature map in the first step to get the

intermediate attended image feature and following the 𝑡
compliment steps as mentioned above.

Then, after the generation of attended word vectors and
image feature maps are generated, the weighted word
vectors are passed to the LSTM to get the overall question
vectors. The whole pipeline is depicted in the following
diagram:

3. OUR APPROACH

We also use a multi-model approach in which we distribute
questions in 3 different classes depending on the type of
answers we expect. The intuition behind this is, when we
are asked a question, we somehow know what kind of
answer is expected to be given. For example : if someone
asks us questions like “Is there a dog in this picture?” we
somehow know that the answer is going to be either yes or
no. Also, for questions like “How many people are there in
this image?”, it is expected that the answer is some integer
value.

One simple approach to classify these questions on
the basis of answer type is to look at the question word itself
i.e question words like what, where, when etc should each
be given a separate category. But this trivial method is not
expected to achieve satisfactory results. The issue lies in the
fact that some question words (such as what, which) can
lead to a wide variety of answers, for example, questions
like “what is the man doing in this picture?” expects the
answer to be an action but if someone asks “what is the time
in this clock?” the answer should be a value. This type of
ambiguity in answer type based on question word
theoretically limits the model. However, sometimes the type
of questions that can be asked are limited by the motivation
behind asking the question, for example, questions asked in
Visual Question Answering are way different from the open
ended questions like “what is the capital of India?”. Here,
the questions that are generally floated are of the form “Is
there a cow in this picture?” which gives either a “yes” or
“no” as an answer. That means even if we just make two
classes of questions one with “yes”/”no” types and the other
with remaining answer types, we expect the overall
accuracy to increase as the bias created in single model
approach due to a lot of training data giving “yes” or “no”
as an output is now removed.

4. EXPERIMENT AND SETUP

We have experimented with both: basic pipeline and our
approach in this project:

4.1 Basic Pipeline

First we have tried to implement a basic pipeline from
scratch. For this we have used MSCOCO dataset.[2]
The MSCOCO dataset has 82783 images with three
questions asked per image in the training set. It has 40504
images with three questions per image in the test dataset.
There are 10 human annotated answers in the test dataset.
Because of hardware limitations, we have taken 30000 data
points for training and 15000 data points for testing.
We have borrowed VGG16 CNN features from stanford
repository for image features [10]
We have used three different methods to extract features
from questions: Google news dataset for W2V, Stanford
dataset for GLoVe, and wrote code for BoW. We have also
tried LSTM using GloVe features.
We have concatenated the image features and question
features and passed it through MLP. We have used MLP
with two hidden layers. Output of this MLP is 1000 x 1

vector corresponding to the top 1000 answers. Top 1000
answer from the training dataset was covering 87% of the
total dataset. So, choosing it is not a bad assumption. Our
MLP looks like:

We have then compared each predicted answer to test
answers and reported it correct if it matches with at least
three out of ten of the human annotated answers.

4.2 Our Approach

On exploring our training dataset of 30000 observations we
found that questions that had question words like
‘Is’/’can’/’should’ etc gave answers as either ‘yes’ or ‘no’
11338 out of 12036 times. This implied 2 things - firstly, a
lot of questions asked on images give only “yes” or “no” as
an output (38% in this case). Secondly, in questions that
begin with ‘If’/can’/’should’ etc 94% of the time we had to
choose the right answer from only two possible outcomes.
That means if we just make a separate category of these
questions and train it separately, we expect the accuracy of
output to be higher. Following this observation questions
were classified in the following three categories -

1. Questions with question word
‘Is’/’Are’/’Do’/’Does’/’Has’/’Have’/’Can’/’Should
’/’Could’/’Will’/’Shall’/’Would’

2. Questions with question word ‘How many’
3. Other questions

The questions were then trained in three different neural
nets with similar architecture but different outputs. For the
first neural net sigmoid was used an activation function in
the last layer to give one output between 0 and 1. In the
second neural net, softmax was used as the activation
function with 100 integers as probable output and in the
third neural net, top 1500 possible answers were chosen as
probable outputs.

5. RESULT AND DISCUSSION

For the basic pipeline, we have tested each model for 100
epochs and got the following accuracy.

Epoch/M
odel w2v GloVe BoW

LSTM
(Glove)

10 0.2244 0.2979 0.2497 0.2444

20 0.2308 0.3271 0.2956 0.2575

30 0.2326 0.3700 0.3226 0.3309

40 0.2468 0.3729 0.3247 0.3526

50 0.2608 0.3968 0.3301 0.3603

60 0.2695 0.3812 0.3192 0.3686

70 0.2651 0.3820 0.3244 0.3654

80 0.2669 0.3756 0.3328 0.3569

90 0.2888 0.3608 0.3288 0.3495

100 0.2842 0.3646 0.3296 0.3365

We were getting a good accuracy (around 40%) using a very
less dataset and in the basic pipeline. We thought that the
accuracy would improve further after introducing LSTM but
it didn’t happen as depicted in the graph. We were not able
to debug this error.

In our approach where we are using multi model method,
we have got an accuracy of 66.56% for Yes/No type of
questions, 32.80% for numerical answer type questions and
21.5% for other type of questions, for 30 epochs using
GLoVe as feature vector for questions. These accuracies are
not upto the mark. We thought we would get upto 80%
accuracy for Yes/No type but it didn’t happen unfortunately.
So, we didn’t try other variants in this approach.
We also wrote the code for co-attention but unfortunately
finally we weren’t able to implement it due to some
unresolved bug and time constraint as the system changed
during the training time of the whole LSTM+Co_attention
pipeline.

6. CONCLUSION

As our modest results show, the work on VQA is still in an
early stage. However, Deep Learning approaches have
shown promise on this task and they are expected to remain
the weapon of our choice. In the last two years, there has
been some work on including question and image Co-
attention in the VQA pipeline and it has led to modest
improvement in the State of the Art results[1][3]. However,
the role of question and image Co-attention needs to be
explored further for VQA tasks as it can even further
improve the results on VQA tasks.

REFERENCES

[1] Liang-Wei Chen, Shuai Tang (2017). “Visual Question
Answering.” http://slazebni.cs.illinois.edu/spring17/lec23_vqa.pdf
[2] http://www.visualqa.org/vqa_v1_download.html
[3] Hierarchical Question-Image Co-Attention for Visual Question
Answering, Jiasen Lu, Jianwei Yang, Dhruv Batra,, Devi Parikh,
NIPS 2016
[4] Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer
feedforward networks are universal approximators. Neural
Networks, 2, 359–366.
[5]VQA: Visual Question Answering, Antol et. al, ICCV 2015
[6] Akshay Kumar Gupta. “Survey of Visual Question Answering:
Datasets and Techniques.” 2017
[7] Razavian, Ali Sharif, Hossein Azizpour, Josephine Sullivan,
and Stefan Carlsson. "CNN features off-the-shelf: an astounding
baseline for recognition." In Computer Vision and Pattern
Recognition Workshops (CVPRW), 2014 IEEE Conference on, pp.
512-519. IEEE, 2014.

[8] He, K., Zhang, X., Ren, S. and Sun, J., 2015. Delving deep into
rectifiers: Surpassing human-level performance on imagenet
classification. In Proceedings of the IEEE international conference
on computer vision (pp. 1026-1034)
[9] Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term
memory." Neural computation 9.8 (1997): 1735-1780.
[10] https://cs.stanford.edu/people/karpathy/deepimagesent/
[11] Goldberg, Yoav, and Omer Levy. "word2vec explained:
Deriving mikolov et al.'s negative-sampling word-embedding
method." arXiv preprint arXiv:1402.3722 (2014).
[12] Pennington, Jeffrey, Richard Socher, and Christopher
Manning. "Glove: Global vectors for word representation."
Proceedings of the 2014 conference on empirical methods in
natural language processing (EMNLP). 2014.

http://slazebni.cs.illinois.edu/spring17/lec23_vqa.pdf
https://cs.stanford.edu/people/karpathy/deepimagesent/

